About Enhancer

Enhancer ID: E_01_0423
Species: human
Position : chr11:47266314-47268314
Biosample name:
Experiment class : High+Lowthroughput
Enhancer type: Enhancer
Disease: Insomnia
Pubmed ID:  29883697
Enhancer experiment: GWAS
Enhancer experiment description: The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.

About Target gene

Target gene : MADD,PPP2R3C,CASP9,PLEKHM2
Strong evidence: qRT-PCR,qPCR,ChIP,3C
Less strong evidence: RNA-Seq
Target gene experiment description: The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.;The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.;The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.;The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.

About TF

TF name : --
TF experiment: GWAS
TF experiment description: The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.;The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.;The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.;The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.

About Function

Enhancer function : The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.
Enhancer function experiment: Immunohistochemical staining
Enhancer function
experiment description:
The chromosomal enhancer maps of 6 brain regions were then aligned with the GWAS summary data to obtain the association testing results of enhancer regions for insomnia. Gene prioritization, tissue/cell and pathway enrichment analysis were implemented by Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) tool. We identified multiple cross-brain regions or brain-region specific prioritized genes for insomnia, such as MADD (P = .0013 in angular gyrus), PPP2R3C (P = .0319 in cingulate gyrus), CASP9 (P = .0066 in angular gyrus and P = .0278 in hippocampus middle), PLEKHM2 (P = .0032 in angular gyrus, P = .0052 in anterior caudate, P = .0385 in cingulate gyrus and P = .0011 in inferior temporal lobe). This study also detected a group of insomnia associated biological pathways within multiple or specific brain regions, such as REACTOME_SIGNALING_BY_NOTCH and KEGG_GLYCEROPHOSPHOLIPID_METABOLISM. Our results showed that insomnia associated genes were significantly enriched in neural stem cells. Our results highlight a set of potential points, particularly neural stem cells, for subsequent biological studies for insomnia.

About SNP

SNP ID: --

Upstream Pathway Annotation of TF

GeneName Pathway Name Source Gene Number

Enhancer associated network

The number on yellow line represents the distance between enhancer and target gene

Expression of target genes for the enhancer


Enhancer associated SNPs