Enhancer ID: | E_01_0471 |
Species: | human |
Position : | chr17:15227161-15229161 |
Biosample name: | |
Experiment class : | High+Lowthroughput |
Enhancer type: | Enhancer |
Disease: | Inherited peripheral neuropathies |
Pubmed ID: | 29771329 |
Enhancer experiment: | CRISPR/Cas9,siRNA treatment,RT-qPCR,Spectral karyotyping |
Enhancer experiment description: | In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression. |
Target gene : | PMP22,Pmp22 |
Strong evidence: | qRT-PCR,qPCR,ChIP,3C |
Less strong evidence: | RNA-Seq |
Target gene experiment description: | In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression.;In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression. |
TF name : | -- |
TF experiment: | CRISPR/Cas9,siRNA treatment,RT-qPCR,Spectral karyotyping |
TF experiment description: | In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression.;In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression. |
Enhancer function : | In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression. |
Enhancer function experiment: | Immunohistochemical staining |
Enhancer function experiment description: |
In this study, we have utilized genome editing to create a deletion of this super-enhancer to determine its role in Pmp22 regulation. Our data show a significant decrease in Pmp22 transcript expression using allele-specific internal controls. Moreover, the P2 promoter of the Pmp22 gene, which is used in other cell types, is affected, but we find that the Schwann cell-specific P1 promoter is disproportionately more sensitive to loss of the super-enhancer. These data show for the first time the requirement of these upstream enhancers for full Pmp22 expression. |
SNP ID: | -- |
GeneName | Pathway Name | Source | Gene Number |
---|