About Enhancer

Enhancer ID: E_01_0483
Species: mouse
Position : chr15:39606417-39608417
Biosample name:
Experiment class : High+Lowthroughput
Enhancer type: Enhancer
Disease: Nothing
Pubmed ID:  29760402
Enhancer experiment: qRT-PCR,TRAP staining,CRISPR/Cas9,Retroviral gene transfer,shRNA transfection,CAGE,
Enhancer experiment description: Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.

About Target gene

Target gene : Dcstamp,Nfatc1,Nrp2
Strong evidence: qRT-PCR,qPCR,ChIP,3C
Less strong evidence: RNA-Seq
Target gene experiment description: Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.;Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.;Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.

About TF

TF name : --
TF experiment: qRT-PCR,TRAP staining,CRISPR/Cas9,Retroviral gene transfer,shRNA transfection,CAGE,
TF experiment description: Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.;Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.;Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.

About Function

Enhancer function : Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.
Enhancer function experiment: Immunohistochemical staining
Enhancer function
experiment description:
Furthermore, osteoclast differentiation was impaired by targeted deletion of bidirectional eRNA regions. The combined results show that eRNAs play important roles in osteoclastogenic gene regulation, and may therefore provide novel insights to elucidate the transcriptional mechanisms that control osteoclast differentiation.

About SNP

SNP ID: --

Upstream Pathway Annotation of TF

GeneName Pathway Name Source Gene Number

Enhancer associated network

The number on yellow line represents the distance between enhancer and target gene

Expression of target genes for the enhancer


Enhancer associated SNPs