Enhancer ID: | E_01_0486 |
Species: | human |
Position : | chr9:81580468-81582468 |
Biosample name: | |
Experiment class : | High+Lowthroughput |
Enhancer type: | Enhancer |
Disease: | Postnatal microcephaly |
Pubmed ID: | 29758293 |
Enhancer experiment: | Immunostaining |
Enhancer experiment description: | Using trio-based exome sequencing, we identified a homozygous missense mutation in the Transducin-like enhancer of split-1 (TLE1) gene, encoding for a non DNA-binding transcriptional corepressor, highly expressed in the postnatal brain. The regulation of the post-mitotic neural survival activity of TLE1 depends critically on an interaction with FOXG1, a gene shown to be involved in a postnatal microcephaly syndrome. Functional analysis on affected dermal fibroblasts showed a significant decrease in mitotic and proliferative index, indicating a lengthening of the cell cycle and a delay in mitosis, supporting that this gene could be a new candidate for postnatal microcephaly. |
Target gene : | FOXG1 |
Strong evidence: | qRT-PCR,qPCR,ChIP,3C |
Less strong evidence: | RNA-Seq |
Target gene experiment description: | Using trio-based exome sequencing, we identified a homozygous missense mutation in the Transducin-like enhancer of split-1 (TLE1) gene, encoding for a non DNA-binding transcriptional corepressor, highly expressed in the postnatal brain. The regulation of the post-mitotic neural survival activity of TLE1 depends critically on an interaction with FOXG1, a gene shown to be involved in a postnatal microcephaly syndrome. Functional analysis on affected dermal fibroblasts showed a significant decrease in mitotic and proliferative index, indicating a lengthening of the cell cycle and a delay in mitosis, supporting that this gene could be a new candidate for postnatal microcephaly.;Using trio-based exome sequencing, we identified a homozygous missense mutation in the Transducin-like enhancer of split-1 (TLE1) gene, encoding for a non DNA-binding transcriptional corepressor, highly expressed in the postnatal brain. The regulation of the post-mitotic neural survival activity of TLE1 depends critically on an interaction with FOXG1, a gene shown to be involved in a postnatal microcephaly syndrome. Functional analysis on affected dermal fibroblasts showed a significant decrease in mitotic and proliferative index, indicating a lengthening of the cell cycle and a delay in mitosis, supporting that this gene could be a new candidate for postnatal microcephaly. |
TF name : | TLE1 |
TF experiment: | Immunostaining |
TF experiment description: | Using trio-based exome sequencing, we identified a homozygous missense mutation in the Transducin-like enhancer of split-1 (TLE1) gene, encoding for a non DNA-binding transcriptional corepressor, highly expressed in the postnatal brain. The regulation of the post-mitotic neural survival activity of TLE1 depends critically on an interaction with FOXG1, a gene shown to be involved in a postnatal microcephaly syndrome. Functional analysis on affected dermal fibroblasts showed a significant decrease in mitotic and proliferative index, indicating a lengthening of the cell cycle and a delay in mitosis, supporting that this gene could be a new candidate for postnatal microcephaly.;Using trio-based exome sequencing, we identified a homozygous missense mutation in the Transducin-like enhancer of split-1 (TLE1) gene, encoding for a non DNA-binding transcriptional corepressor, highly expressed in the postnatal brain. The regulation of the post-mitotic neural survival activity of TLE1 depends critically on an interaction with FOXG1, a gene shown to be involved in a postnatal microcephaly syndrome. Functional analysis on affected dermal fibroblasts showed a significant decrease in mitotic and proliferative index, indicating a lengthening of the cell cycle and a delay in mitosis, supporting that this gene could be a new candidate for postnatal microcephaly. |
Enhancer function : | Using trio-based exome sequencing, we identified a homozygous missense mutation in the Transducin-like enhancer of split-1 (TLE1) gene, encoding for a non DNA-binding transcriptional corepressor, highly expressed in the postnatal brain. The regulation of the post-mitotic neural survival activity of TLE1 depends critically on an interaction with FOXG1, a gene shown to be involved in a postnatal microcephaly syndrome. Functional analysis on affected dermal fibroblasts showed a significant decrease in mitotic and proliferative index, indicating a lengthening of the cell cycle and a delay in mitosis, supporting that this gene could be a new candidate for postnatal microcephaly. |
Enhancer function experiment: | Immunohistochemical staining |
Enhancer function experiment description: |
Using trio-based exome sequencing, we identified a homozygous missense mutation in the Transducin-like enhancer of split-1 (TLE1) gene, encoding for a non DNA-binding transcriptional corepressor, highly expressed in the postnatal brain. The regulation of the post-mitotic neural survival activity of TLE1 depends critically on an interaction with FOXG1, a gene shown to be involved in a postnatal microcephaly syndrome. Functional analysis on affected dermal fibroblasts showed a significant decrease in mitotic and proliferative index, indicating a lengthening of the cell cycle and a delay in mitosis, supporting that this gene could be a new candidate for postnatal microcephaly. |
SNP ID: | rs201140985 |