About Enhancer

Enhancer ID: E_01_0645
Species: human
Position : chr2:226728494-226730494
Biosample name:
Experiment class : High+Lowthroughput
Enhancer type: Enhancer
Disease: Type 2 diabetes mellitus
Pubmed ID:  30826407
Enhancer experiment: Nuclear magnetic resonance (NMR) spectroscopy analysis ?RNA extraction and real-time PCR ?Western blot analysis ?Histopathological analysis ,Analysis of glycated hemoglobin and ?-cell function
Enhancer experiment description: Phosphatidylinositol-3-kinase (PI3K), 74 insulin receptor substrate 1 (IRS1), and glucose transporter 4 (GLUT4) play crucial roles in 75 glucose metabolism and insulin resistance. The mechanism begins with the stimulation of 76 insulin receptor intrinsic kinase activity to activate PI3K signaling. Then, PI3K inhibits the 77 c-Jun N-terminal kinase 1 (JNK1) activity in succession. Moreover, GLUT4, which is 78 regulated by insulin, is able to reduce glucose levels through participating in the IRS/PI3K 79 signaling pathway (Chen et al., 2018).

About Target gene

Target gene : IRS1(HIRS-1)
Strong evidence: qRT-PCR,qPCR,ChIP,3C
Less strong evidence: RNA-Seq
Target gene experiment description: Phosphatidylinositol-3-kinase (PI3K), 74 insulin receptor substrate 1 (IRS1), and glucose transporter 4 (GLUT4) play crucial roles in 75 glucose metabolism and insulin resistance. The mechanism begins with the stimulation of 76 insulin receptor intrinsic kinase activity to activate PI3K signaling. Then, PI3K inhibits the 77 c-Jun N-terminal kinase 1 (JNK1) activity in succession. Moreover, GLUT4, which is 78 regulated by insulin, is able to reduce glucose levels through participating in the IRS/PI3K 79 signaling pathway (Chen et al., 2018).

About TF

TF name : --
TF experiment: Nuclear magnetic resonance (NMR) spectroscopy analysis ?RNA extraction and real-time PCR ?Western blot analysis ?Histopathological analysis ,Analysis of glycated hemoglobin and ?-cell function
TF experiment description: Phosphatidylinositol-3-kinase (PI3K), 74 insulin receptor substrate 1 (IRS1), and glucose transporter 4 (GLUT4) play crucial roles in 75 glucose metabolism and insulin resistance. The mechanism begins with the stimulation of 76 insulin receptor intrinsic kinase activity to activate PI3K signaling. Then, PI3K inhibits the 77 c-Jun N-terminal kinase 1 (JNK1) activity in succession. Moreover, GLUT4, which is 78 regulated by insulin, is able to reduce glucose levels through participating in the IRS/PI3K 79 signaling pathway (Chen et al., 2018).

About Function

Enhancer function : Phosphatidylinositol-3-kinase (PI3K), 74 insulin receptor substrate 1 (IRS1), and glucose transporter 4 (GLUT4) play crucial roles in 75 glucose metabolism and insulin resistance. The mechanism begins with the stimulation of 76 insulin receptor intrinsic kinase activity to activate PI3K signaling. Then, PI3K inhibits the 77 c-Jun N-terminal kinase 1 (JNK1) activity in succession. Moreover, GLUT4, which is 78 regulated by insulin, is able to reduce glucose levels through participating in the IRS/PI3K 79 signaling pathway (Chen et al., 2018).
Enhancer function experiment: Immunohistochemical staining
Enhancer function
experiment description:
Phosphatidylinositol-3-kinase (PI3K), 74 insulin receptor substrate 1 (IRS1), and glucose transporter 4 (GLUT4) play crucial roles in 75 glucose metabolism and insulin resistance. The mechanism begins with the stimulation of 76 insulin receptor intrinsic kinase activity to activate PI3K signaling. Then, PI3K inhibits the 77 c-Jun N-terminal kinase 1 (JNK1) activity in succession. Moreover, GLUT4, which is 78 regulated by insulin, is able to reduce glucose levels through participating in the IRS/PI3K 79 signaling pathway (Chen et al., 2018).

About SNP

SNP ID: --

Upstream Pathway Annotation of TF

GeneName Pathway Name Source Gene Number

Enhancer associated network

The number on yellow line represents the distance between enhancer and target gene

Expression of target genes for the enhancer


Enhancer associated SNPs