Enhancer ID: | E_02_0321 |
Species: | human |
Position : | chr10:88951091-88953091 |
Biosample name: | |
Experiment class : | High+Lowthroughput |
Enhancer type: | Enhancer |
Disease: | Obesity |
Pubmed ID: | 29710033 |
Enhancer experiment: | Western blot,qPCR,Immunofluorescence,crystal violet staining assays,sudan II staining, |
Enhancer experiment description: | CE dose-dependently decreased fat accumulation in 3T3-L1 cells without affecting cell viability. CE also dose-dependently decreased the protein and gene expression levels of two adipogenesis-related transcription factors, peroxisome proliferator-activated receptor gamma (PPAR?) and CCAAT/enhancer-binding proteins (C/EBPs). Moreover, CE decreased protein expression levels of sterol regulatory element-binding protein 1 (SREBP1) and its downstream fatty acid synthase (FAS), which was accompanied by the retained localization of SREBP1 in the cytoplasm of 3T3-L1 cells. After ICR mice were fed a diet containing 1% CE for 1 wk, their white adipose tissue weight was lower, whereas their brown adipose tissue weight was higher compared with those of control animals. Additionally, the protein expression levels of PPAR?, C/EBPs, SREBP1, and FAS in the white adipose tissue of these mice were also lower than those in control animals. In contrast, diet supplementation with CE induced higher levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream acetyl-CoA carboxylase. In conclusion, methylxanthine derivative-rich CE decreases fat accumulation in adipocytes by downregulating the expression of the adipocyte differentiation master regulators through the activation of AMPK. |
Target gene : | FAS |
Strong evidence: | qRT-PCR,qPCR,ChIP,3C |
Less strong evidence: | RNA-Seq |
Target gene experiment description: | CE dose-dependently decreased fat accumulation in 3T3-L1 cells without affecting cell viability. CE also dose-dependently decreased the protein and gene expression levels of two adipogenesis-related transcription factors, peroxisome proliferator-activated receptor gamma (PPAR?) and CCAAT/enhancer-binding proteins (C/EBPs). Moreover, CE decreased protein expression levels of sterol regulatory element-binding protein 1 (SREBP1) and its downstream fatty acid synthase (FAS), which was accompanied by the retained localization of SREBP1 in the cytoplasm of 3T3-L1 cells. After ICR mice were fed a diet containing 1% CE for 1 wk, their white adipose tissue weight was lower, whereas their brown adipose tissue weight was higher compared with those of control animals. Additionally, the protein expression levels of PPAR?, C/EBPs, SREBP1, and FAS in the white adipose tissue of these mice were also lower than those in control animals. In contrast, diet supplementation with CE induced higher levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream acetyl-CoA carboxylase. In conclusion, methylxanthine derivative-rich CE decreases fat accumulation in adipocytes by downregulating the expression of the adipocyte differentiation master regulators through the activation of AMPK. |
TF name : | -- |
TF experiment: | Western blot,qPCR,Immunofluorescence,crystal violet staining assays,sudan II staining, |
TF experiment description: | CE dose-dependently decreased fat accumulation in 3T3-L1 cells without affecting cell viability. CE also dose-dependently decreased the protein and gene expression levels of two adipogenesis-related transcription factors, peroxisome proliferator-activated receptor gamma (PPAR?) and CCAAT/enhancer-binding proteins (C/EBPs). Moreover, CE decreased protein expression levels of sterol regulatory element-binding protein 1 (SREBP1) and its downstream fatty acid synthase (FAS), which was accompanied by the retained localization of SREBP1 in the cytoplasm of 3T3-L1 cells. After ICR mice were fed a diet containing 1% CE for 1 wk, their white adipose tissue weight was lower, whereas their brown adipose tissue weight was higher compared with those of control animals. Additionally, the protein expression levels of PPAR?, C/EBPs, SREBP1, and FAS in the white adipose tissue of these mice were also lower than those in control animals. In contrast, diet supplementation with CE induced higher levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream acetyl-CoA carboxylase. In conclusion, methylxanthine derivative-rich CE decreases fat accumulation in adipocytes by downregulating the expression of the adipocyte differentiation master regulators through the activation of AMPK. |
Enhancer function : | CE dose-dependently decreased fat accumulation in 3T3-L1 cells without affecting cell viability. CE also dose-dependently decreased the protein and gene expression levels of two adipogenesis-related transcription factors, peroxisome proliferator-activated receptor gamma (PPAR?) and CCAAT/enhancer-binding proteins (C/EBPs). Moreover, CE decreased protein expression levels of sterol regulatory element-binding protein 1 (SREBP1) and its downstream fatty acid synthase (FAS), which was accompanied by the retained localization of SREBP1 in the cytoplasm of 3T3-L1 cells. After ICR mice were fed a diet containing 1% CE for 1 wk, their white adipose tissue weight was lower, whereas their brown adipose tissue weight was higher compared with those of control animals. Additionally, the protein expression levels of PPAR?, C/EBPs, SREBP1, and FAS in the white adipose tissue of these mice were also lower than those in control animals. In contrast, diet supplementation with CE induced higher levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream acetyl-CoA carboxylase. In conclusion, methylxanthine derivative-rich CE decreases fat accumulation in adipocytes by downregulating the expression of the adipocyte differentiation master regulators through the activation of AMPK. |
Enhancer function experiment: | Immunohistochemical staining |
Enhancer function experiment description: |
CE dose-dependently decreased fat accumulation in 3T3-L1 cells without affecting cell viability. CE also dose-dependently decreased the protein and gene expression levels of two adipogenesis-related transcription factors, peroxisome proliferator-activated receptor gamma (PPAR?) and CCAAT/enhancer-binding proteins (C/EBPs). Moreover, CE decreased protein expression levels of sterol regulatory element-binding protein 1 (SREBP1) and its downstream fatty acid synthase (FAS), which was accompanied by the retained localization of SREBP1 in the cytoplasm of 3T3-L1 cells. After ICR mice were fed a diet containing 1% CE for 1 wk, their white adipose tissue weight was lower, whereas their brown adipose tissue weight was higher compared with those of control animals. Additionally, the protein expression levels of PPAR?, C/EBPs, SREBP1, and FAS in the white adipose tissue of these mice were also lower than those in control animals. In contrast, diet supplementation with CE induced higher levels of phosphorylated AMP-activated protein kinase (AMPK) and its downstream acetyl-CoA carboxylase. In conclusion, methylxanthine derivative-rich CE decreases fat accumulation in adipocytes by downregulating the expression of the adipocyte differentiation master regulators through the activation of AMPK. |
SNP ID: | -- |
GeneName | Pathway Name | Source | Gene Number |
---|